A verified method for solving piecewise smooth initial value problems
نویسندگان
چکیده
In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview of possibilities to formulate non-smooth problems and point out connections between the traditional non-smooth theory and interval analysis. Moreover, we summarize already existing verified methods for solving initial value problems with non-smooth (in fact, even not absolutely continuous) right-hand sides and propose a way of handling a certain practically relevant subclass of such systems. We implement the approach for the solver VALENCIA-IVP by introducing into it a specialized template for enclosing the first-order derivatives of non-smooth functions. We demonstrate the applicability of our technique using a mechanical system model with friction and hysteresis. We conclude the paper by giving a perspective on future research directions in this area.
منابع مشابه
MODIFIED K-STEP METHOD FOR SOLVING FUZZY INITIAL VALUE PROBLEMS
We are concerned with the development of a K−step method for the numerical solution of fuzzy initial value problems. Convergence and stability of the method are also proved in detail. Moreover, a specific method of order 4 is found. The numerical results show that the proposed fourth order method is efficient for solving fuzzy differential equations.
متن کاملUniform Convergent Methods on Arbitrary Meshes for Singularly Per- turbed Problems with Piecewise Smooth Coefficients
This paper deals with uniform convergent methods for solving singularly perturbed two-point boundary value problems with piecewise smooth coefficients. Construction of the numerical methods is based on locally exact schemes or on local Green’s functions. Uniform convergent properties of the proposed methods on arbitrary meshes are proven. Numerical experiments are presented.
متن کاملReproducing Kernel Hilbert Space(RKHS) method for solving singular perturbed initial value problem
In this paper, a numerical scheme for solving singular initial/boundary value problems presented.By applying the reproducing kernel Hilbert space method (RKHSM) for solving these problems,this method obtained to approximated solution. Numerical examples are given to demonstrate theaccuracy of the present method. The result obtained by the method and the exact solution are foundto be in good agr...
متن کاملApproximated solution of First order Fuzzy Differential Equations under generalized differentiability
In this research, a numerical method by piecewise approximated method for solving fuzzy differential equations is introduced. In this method, the solution by piecewise fuzzy polynomial is present. The base of this method is using fuzzy Taylor expansion on initial value of fuzzy differential equations. The existence, uniqueness and convergence of the approximate solution are investigated. To sho...
متن کاملSOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD
Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 23 شماره
صفحات -
تاریخ انتشار 2013